#### GALAPHYS Axe 2: galaxies





Françoise Combes

Observatoire de Paris & Collège de France

Atelier de travail GALAPHYS, Observatoire de Paris

#### Overview

#### Epoch of Re-ionization

- Traced by quasars, 21cm HI redshifted to 2m
  - Simulation library, Machine learning
  - Wavelet statistics, 2D compression

#### CMB foreground, dust non-Gaussian statistics

- B-mode detection for GW inflation
  - MHD simulation, and wavelet statistics

#### Galaxy evolution and environment

- Large-scale surveys, LOTSS (2m), ALMA & NOEMA
  - Jelly-fish galaxies, ram-pressure stripping
  - Redshift evolution, star formation and gas content

#### Active Galaxy Nuclei (AGN) & black holes

- AGN fueling and feedback
  - Cooling flows in clusters, BCG
  - Molecular tori, and outflows

#### **Traces of re-ionisation**



#### **Determine the epoch of reionisation**



Robertson et al 2015

Constraints from CMB, WMAP, Planck, and Quasars If  $\tau e= 0.09$  EoR between z=15 & 6 $\tau e= 0.06 \rightarrow z_{re} = 8.14 + 0.61$ 



Semelin et al 2007

## Upper limits on the reionisation signal

Recent upper limit with NenuFAR at  $2\sigma$ (*Munshi et al 2023*) 2.4 10<sup>7</sup> mK<sup>2</sup>, for z=20 and k = 0.041 h cMpc<sup>-1</sup>





Mertens et al 2021

## **Characterization of the 21cm EoR signal**



Reduced wavelets transforms, and wavelet moments, evolution-compressed statistics A way to extract more information than 3D isotropic power spectrum

Hothi, Allys, Semelin, Boulanger 2023

## **Polarisation of CMB: B-mode**



## **Foreground dust emission**



from MHD simulations Statistics of multi-observable (I,E,B) and multi-frequency of I (SED) Non-gaussian statistics

Regaldo-Saint Blancard et al 2023



WPH=Wavelet Phase Harmonics

## Radio surveys, Giant radio galaxies

#### Image deconvolution and automatic search of objects (Tasse et al. 2021)



## Galaxy clusters: quenching mechanisms

#### **SEEDisCS** (Sperone-Longin et al 2021)

At z < 1, galaxies in clusters are quenched, A reversal is expected at z > 1.5The SF increases, to be higher in clusters than in the field





#### z~0.6 major mergers, scatter scaling relations

#### The cosmic web and galaxy formation



## BCG, protoclusters, around radio sources

Castignani, Radovich, Combes, Salome et al 2022, KIDS z~0.4-0.5

Observations IRAM-30m, NOEMA CO(4-3) z~1, *Castignani, Combes, Salome 2019, 2020* 



0.004

#### NOEMA in SpARCS1049 BCG at z = 1.7





Castignani, Combes, Salome 2020

# Galaxy morphology evolution

Jachym et al 2019, 2022



#### Cluster stripping, harrassment



Molecular gas dominant in the ram-pressure tails

## Galaxies at high z, with ALMA

Gas fraction, depletion time  $t_{dep}$ Star formation efficiency SFE and evolution with redshift



# 0.2" / 1.6 kpc A521, z=1

Bigger and more Massive GMC



The Snake, A521, Dessauges-Zavadsky et al 2019, 2023

#### Strong lensing

## **PHIBSS: Scaling relations**

#### **LP IRAM-NOEMA** Gas fraction increases regularly with z on the Main Sequence

#### EGS1305123 z=1.12



log(M\*/Mo)=9.-11.8, δMS=SFR/SFR(MS) tdep ~ (1+z)<sup>-0.57</sup> (δMS)<sup>-0.44</sup>

 $\mu$ = M<sub>mol</sub> /M\* ~ (1+z)<sup>2.8</sup> ( $\delta$ MS)<sup>0.54</sup> (M\*)<sup>-0.34</sup>



(with Combes, Salome)

# **Cooling Flows, BCG, AGN**

# → Observations

#### HERSCHEL:

Large Program: sample of cooling flow clusters (*Edge et al*) SPIRE FTS on PERSEUS



# AGN moderation and quenching



do not represent correctly the thin filaments, linear, with coherent velocity  $\rightarrow$  more BH spin?





3 arcsec

## **AGN fueling and feedback**



Only ~35% of negative torques in the center, scale 1"~50-100pc
20 galaxies (Garcia-Burillo, Combes et al 2012)

Discovery of molecular tori
with ALMA (*Combes et al 2019*)
Computation of gravity torques (Audibert et al 2019, 21)



## Molecular Outflows + torus (~7pc)



N1433



#### NGC 1068: Outflow of 63Mo/yr About 10 times the SFR in this CMD

Garcia-Burillo, Combes et al 2018, 2021



N1377 precessing jet

Aalto et al 2017, 2019



#### **Facilities**





















## Thanks for your attention











13/11/2023

Atelier de travail GALAPHYS, Observatoire de Paris